Step of Proof: lt_int_eq_false_elim_sqequal
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
lt
int
eq
false
elim
sqequal
:
1.
i
:
2.
j
:
3.
i
<z
j
~ ff
(
i
<
j
)
latex
by (\p. let x, y = dest_sqequal (h (-1) p) in
by (\p
(Assert (mk_equal_term bool_term y y)
by (\p(As
THENL [(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
) inil_term); SqSubstAtAddr [2] x (-1)
) inil_term); SqSubs
THENL [(Auto_aux (first_nat 1:n
) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term); Id]]) p)
latex
1
:
1:
4.
i
<z
j
= ff
1:
(
i
<
j
)
.
Definitions
t
T
Lemmas
bfalse
wf
origin